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This is a textbook that will focus on the most essential topics 
in Digital Signal Process (DSP).  With the intent of focusing 
on those topics that have proven most helpful through out my 
career. 

It will hopefully allow the students in DSP to build a deep 
understanding of the more basic topics in DSP.  The intent 
is not to prepare the student for any problem they might 
encounter, but prepare the student to learn about a new 
technique when needed. 





Figure 1.1 
Sampling 
System 
Setup 

1. 

This text is intended to cover the primary topics in Digital 
Signal Processing (DSP), Discrete Signal Processing.  It is not 
intended to be complete or comprehensive, rather to focus on 
those topics that have proven most pertinent in using DSP to 
collect and analyze data.  Although the data processed with 
these techniques vary, our primary goal is to work on the classic 
sampled data system as is shown in Figure 1 A). 

In the above figure the input is a continuous signal or voltage, 
which might represent the output of a sensor detecting a 
position, speed, etc.  For the computer to work with this signal 
it must be converted to digital numbers.  This is achieved by 
the use of an Analog to Digital Converter (ADC), which sends 
out a stream of N-bit digital number at discrete points in time. 
This stream of numbers is depicted as a string of values which 
are discrete both in time and value.  Once these samples have 
been processed, they are sent out as an altered stream of 
numbers.  Note the output may be at a different time and 
value resolution, M-bit.  Finally the output can be changed 



into a voltage via a Digital to Analog Converter (DAC).  The 
most notable feature of the reconstructed signal is its blocky 
nature. 

The text will be organized in a fashion to address the various 
parts of this system, but not in a direct sequence since some 
background is needed to address some topics.  Chapter 2 will 
be about the basic models for sampling and discuss techniques 
for characterizing the spectrum of a sampled signal.  Chapter 
3 progresses to the commonly used techniques to analyze and 
characterize the processing of the discrete data.  Chapter 4 will 
describe the processing of data, or what is commonly called 
filtering of data, which will encompass classic filters, but also 
discuss some nonlinear and intuitive based filters.  Chapter 5 
will use the filtering techniques developed in Chapter 4 to 
address the reconstruction of the outputs.   Chapter 6 will 
address the application and computation of the Discrete 
Fourier Transform (DFT).  Chapter 7 will describe the 
application of adaptive filtering. 

As stated previously this is far from a comprehensive text. It 
should however prepare the student to understand the basics 
of the field of DSP, be able apply DSP to the most basic 
systems and learn about any new DSP system them may 
encounter. 
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2. 

SAMPLING AND ITS 
EFFECTS 

Once people began using computers to analyze data, it became 
apparent that the data was incomplete, in that we only had 
the values at set time intervals.  This process came to be called 
sampling.  The original work on this was done by two 
engineers named Nyquist and Shannon and was based on the 
spectral content of a signal. 

Section A) Nyquist and Shannon Sampling Model 
The Nyquist Sampling Theorem is based on the following 

system or model of the sampling process.  The analog signal, 
x(t), that is to be analyzed is multiplied by a stream of impulses. 

An impulse is a signal that is defined as 

\delta(t) = \begin{bmatrix} 0~for~t \ne 0 \\ \infty 

for~t =  0 \end{bmatrix} 



This is shown as a signal flow diagram here: 

Figure 2.1 Nyquist Sampling Model 

The main point of this system is that the output is a stream of 
 functions with the area under each being based on the value 

of x(t).  To more completely analyze the effects of sampling, we 
first write an equation for the sampling function s(t) as 

                       (2.1) 

then based on the system above we can see that the output 
 is 

                 (2.2) 

Provided that x(t) is a continuous and properly conditioned 
function we can move it inside the summation 

x_s (t) =  \sum_{n=-\infty} ^{\infty} {x(t) *\delta (t-n T)} 
           (2.3) 

Please note that we will commonly disperse with 
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mathematical rigor in this text.  Not because it is not 
important, but rather because it has a habit of derailing the 
reader and inhibits understanding. Similarly since the function 

 is zero, except at (t-n T) = 0 or t = n T, we can 
rewrite equation 2.3 as 

x_s (t) =  \sum_{n=-\infty} ^{\infty} {x(n T) *\delta (t-n 
T)} 

                    (2.4) 
With the primary result being that  is dependent only 

upon the value of x(t) at the discrete times of (n T). 
Now the question is, “How can we analyze this signal to 

interpret and predict the effects of sampling?”  As is common, 
we begin by looking at the spectrum or Fourier transform (FT) 
of the signal.  For this we will start with the transform of 
equation 2.2 

X_s (f) =  \int_{-\infty} ^{\infty} ( ( x(t) * \sum_{n=-
\infty} ^{\infty} {\delta (t-n T)} ) e^{j 2 \pi f t}) dt 

                   (2.5) 
We will now bring in a Fourier transform identity that is 

not commonly used.  It is common to use the identity that the 
product of two FT’s is the convolution of two time functions. 
By the duality of FT’s, the product of two time functions is the 
convolution of their FT’s.  In equation form, 

X_s (f_o) =  \int_{-\infty} ^{\infty} ( X(f) * S(f_o-f) ) df 
                     (2.6) 

Now the spectrum of the input is given, characterizing the 
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signal we are analyzing, so the question has to be what is S(f)? 
For this an intuitive description is used in the following video. 

One or more interactive elements has been 

excluded from this version of the text. You 

can view them online here: 

https://kstatelibraries.pressbooks.pub/dsp-

basics/?p=28#oembed-1 

Thus the FT of the s(t) (a stream of time impulses) is a stream 
of frequency impulses. 

S(f) =  \int_{-\infty} ^{\infty} ( s(t) * e^{j \omega_o *t} ) dt 
= \delta(f - n f_s)~for~n = -\infty~ to ~ \infty 

                   (2.7) 
Applying this to the convolution described above we have 

X_s (f_o) =  \int_{-\infty} ^{\infty} ( X(f) * \delta(f_o - f + 
n f_s ) ) df 

                     (2.8) 
As described previously  functions have a sifting property, 

which means that the only points that survive are when 
 or .  This sifting 

also has the effect of changing the integral into a summation at 
these frequencies are 

X_s (f) =  \sum_{n=-\infty} ^{\infty} ( X(f + n f_s) )        
             (2.9) 
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Note this also did a change of variable from  to . 
The real result of this is that portions of  will 

translate or alias to appear at other frequencies.  For example, 
consider the case of n = 1 and note that 
.  This effect is known as aliasing, since a component of the 
incoming signal is shifted to another frequency.   A more 
critical affect of this is shown in the following video. 

One or more interactive elements has been 

excluded from this version of the text. You 

can view them online here: 

https://kstatelibraries.pressbooks.pub/dsp-

basics/?p=28#oembed-2 

One of the more basic things we can find from the aliasing 
is that as long as the maximum frequency in our incoming 

signal is less that  of the sampling frequency ( 

) the spectrum of the incoming signal can be preserved.  In 
equational form we would have 

                     (2.10) 

or 
f_s \ge 2*f_{max}                      (2.11) 

Thus   is commonly called the Nyquist sampling 
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rate.  It is easy to remember this since the sampling needs to be 
at least at the peaks and valleys, or faster. 

Figure 2.2 Sampling at the Edge of the Nyquist 
Rate. 

 
Example of Aliasing via MatLab 
% First generate a fine sampling of signals to be sampled. 

T = 1/100; % 100 Hz sampling rate. 
xF = [0:T/50:0.1]; % Fine sampling rate of 5 KHz (T / 50 = 1/
5000 ) 
CF1 = cos( 2*pi*95*xF );    % One signal is at 95 Hz 
CF2 = cos( 2*pi*105*xF );  % and the second is at 105 Hz. 
% plot the fine sampling, showing underlying continuous 
signals. 
plot( xF, CF1, ‘b’, xF, CF2, ‘r’ ); 
pause(); 
% Now sample at 100 Hz sampling rate 
xC = [0:T:0.1]; 
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CC1 = cos( 2*pi*95*xC ); 
CC2 = cos( 2*pi*105*xC ); 
hold on   % plotting on top of continuous signals. 
plot( xC, CC1, ‘bo’, xC, CC2, ‘rx’ ); 
% Annotate graph. 
xlabel( ‘Time (seconds)’ ); 
ylabel( ‘Amplitude (Unknown)’ ); 
title( ‘Comparison f = 95 & 105, at fs = 100′ ); 
legend( ’95 Hz’, ‘105 Hz’, ‘Samp 95 Hz’, ‘Samp 105 Hz’ ); 

Note how the sampled points, marked with an “o” and “x” 
align, although the source signal is at a different frequency. 
This is the basic concept of aliasing in that signals at different 
frequencies appear the same once sampled. 

Section B) Aliasing Diagram 
As we observed in the previous section, the affects of 

sampling can be rather confusing and hard to follow.  Thus 
a process that can help us visualize these affects would be 
helpful.  The Aliasing or Folding Diagram is a graphical 
technique for estimating the spectral shape of a signal after 
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sampling. Since it is graphical in nature, it is primarily a tool to 
help estimate and visualize the affects of frequency aliasing. 

Aliasing Diagram Procedure 
Based on the sampling interval, the aliasing diagram can be 

laid out as a folded line of frequencies as 
shown in Figure 2.3. Here the frequency axis is folded back at 
fs/2, fs, 3fs/2, … 

Figure 2.3 Frequency Axis Layout for Aliasing Diagram. 
On the diagram that has been laid out, you should sketch 

the positive portion of the spectrum of the signal to be 
sampled. Figure 2 shows the diagram with an example positive 
spectrum sketched in. 
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Figure 2.4 Second Step of Drawing in the Positive 
Spectrum. 

Once the spectrum is laid out, a “Resultant Spectrum” is 
found by adding up all the spectrum’s from all the various 
folds. The Resultant is shown in red on the 0 to fs/2 portion 
of the frequency axis in Figure 2.5. 
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Figure 2.5 Resultant Spectrum Drawn on 0 to fs/2. 
The Resultant is then copied to all the various folded 

frequency axis’. The copied spectrum’s are shown in blue in 
Figure 2.6. 
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Figure 2.6 Resultant Spectrum Copied into Upper 
Frequencies. 

As a final step, the spectrum of the sampled signal can be 
drawn by “unfolding” the frequency axis. In  Figure 2.7, this 
unfolded plot shows the resultant in red and the unfolded 
upper frequency in blue. 

Figure 2.7 Final Spectrum, Unfolded. 
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EXAMPLE 

A signal is sample every 200 micro seconds, giving a sampling 
frequency of 5 K Hz. The positive 
spectrum of the signal is shown in Figure 2.8. 

Figure 2.8 Input Signals Spectrum. 
The Aliasing Diagram is shown in Figure 2.9, with the 

original spectrum is in green, the resultant is in red and the 
other reflected spectrums are in blue. 
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Figure 2.9 Final Aliasing Diagram for Example signal. 
With the original, resultant and reflected spectrums we can 

unfold the spectrum to get the resultant spectrum that is 
shown in Figure 2.10. 

Figure 2.10 Final Spectrum out to 2 fs. 
An important aspect of this example is the fact that the 

original spectrum is still present in the spectrum after 
sampling.  Since the spectrum is not distorted, we will be 
creating an approach to recover this signal. 
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The following video will further exemplify the use of the 
aliasing diagram to interpret the effects of sampling. 

One or more interactive elements has been 

excluded from this version of the text. You 

can view them online here: 

https://kstatelibraries.pressbooks.pub/dsp-

basics/?p=28#oembed-3 

Section C) Digital to Analog Converter 
(DAC) Reconstruction 

Once the sampled data has been filtered by the micro, refer 
to Figure 1.1, the output sequence is sent to a DAC.  The 
DAC will create an analog voltage that matches the number 
from the micro.  Since the numbers are spaced out at set time 
intervals, the resulting signal will appear as a blocky (stairstep) 
waveform.  The plot that exemplifies this form is shown in 
Figure 2.11. 
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Figure 2.11. Characteristic DAC Output Waveform 
Much like the Nyquist model for sampling, we will need 

to create a system that emulates the shape of this blocky 
reconstruction.  A system like that shown in Figure 2.12 will 
perform this action. 

Figure 2.12 Model for Analyzing the DAC Reconstruction 
In this model we have taken our input to be a stream of 

impulses, much like the Nyquist sampled signal, then filtered 
this stream of impulses with a filter that has an impulse of 
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response that is a square pulse.  The following video will show 
this process in a graphical form. 

One or more interactive elements has been 

excluded from this version of the text. You 

can view them online here: 

https://kstatelibraries.pressbooks.pub/dsp-

basics/?p=28#oembed-4 

As with the sampling model, we will use the FT to analyze of 
the input and system to identify the prominent effects of this 
reconstruction. 

We begin by establishing what the FT of a square pulse 
looks like. 

H(f) =  \int_{-\infty} ^{\infty} (h(t) * e^{j \omega *t} ) dt   
                    (2.12) 

Noting that h(t) is one from t = 0 to T, and zero otherwise, 
we would have 

H(f) =  \int_{0} ^{T} (1 * e^{j \omega *t} ) dt                    
                      (2.13) 

Now    has an easy integral which is equal to 
\frac {e^{j \omega *t}}{j \omega}  and thus 

H(f) = \frac{(e^{j \omega *T}  - e^{0}) }{ j \omega }          
         (2.14) 
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In order to simplify equation 2.13, we will factor out 
 from the numerator, resulting in 

                    (2.15) 

Then employing one of the Euler’s Identities we have 

                             (2.16) 

Cancelling out the j in the numerator and denominator and 

multiplying the numerator and denominator by  we have 

                            (2.17) 

This last step of multiplying the numerator and 

denominator by  was done to have the ratio on the right 

hand side of 2.16, appear as  which is commonly 

called sinc(x). 
H(f) = T e^{j \omega *\frac{T}{2}}  sinc( \omega 

*\frac{T}{2}) 
                     (2.18) 

To properly interpret equation 2.18, we need to recognize 
that the first part, e^{j \omega *\frac{T}{2}}  has a 
magnitude of 1 for all  and only represents a phase shift. 
Thus the magnitude response is set by the sinc function, a 
plot of which is included in Figure 2.13, but the following 
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alterations to the equation is needed to make the plot more 
understandable.  First, we translate from radial to plain 
frequency by replacing  with  and also replacing T with 

H(f) = \frac{1}{fs} e^{j \pi \frac{f}{fs}}  sinc( \pi 
*\frac{f}{fs}) 

                    (2.18) 

Figure 2.13 Plot of  , Normalized to T = 1 

Second (fs = 1). 
Then the output of the system in Figure 2.12 should be the 

product of the inputs spectrum with the sinc shown above.  In 
equational form we have 

                    (2.18) 

We will now work on a Matlab emulation of this process as 
a way to visualize the effect of the DAC reconstruction. 

Matlab Based Emulation 
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We start with two support functions, ins_replicas and 
ins_zeros, which emulate the DAC output and Nyquist 
sampled signals. 

function xn = ins_replicas( x, I ); 

% 

% xn = ins_replicas( x, I ); 

% 

n = length( x ); 

I = I+1; 

% Create an array that is has I*n samples 

representing 

xn = zeros( 1, I*n ); % an upsampling. 

% Loop through the samples in the original 

signal. 

for k = 1:n 

    for m = 1:I % loop to fill in all the samples 

                % in the upsampled signal. 

        xn((k-1)*I+m) = x(k); % x(k) is thus replicated 

    end 

end 

return 
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function xn = ins_zeros( x, I ) 

% 

% xn = ins_zeros( x, I ); 

% 

n = length( x ); 

I = I+1; 

% Create an array that is has I*n samples 

% representing an upsampling. 

xn = zeros( 1, I*n ); 

% Loop through the samples in the original 

signal. 

for k = 1:n 

xn(k*I) = x(k); % place x(k) at start of each 

sample 

end % leaving the other at zero. 

return 

Using these functions we will now emulate the effect from the 
DAC reconstruction. 
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% Clear out prior to test. 

close all; 

clear 

% Create index array 

n = 0:2047; 

% and the test signal that sweeps through 

frequencies. 

x = cos( pi/4096 * n.*n ); 

fs = 44e3; % (Sampling frequency assumed to be 

44 KHz) 

% Simulation of DAC reconstruction by inserting 

replicas of samples. 

xr = ins_replicas( x, 7 ); 

% Emulation of Nyquist sampled signal by 

inserting zeros. 

y = ins_zeros( x,7); 

%Fourier Transform of all the data. 

X = fft( x ); 

Y = fft(y);. 

XR = fft( xr/8 ); % divide by 8 needed since 

inserted replicas add to magnitude. 

% plot Signals. 

subplot( 3,1,1 ),plot( x ); 

ylim( [-1.1 1.1] ); 
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title( ‘Original Signal’ ); 

subplot( 3,1,2 ),plot( y ); 

ylim( [-1.1 1.1] ); 

title( ‘Signal with Inserted Zeros’ ); 

subplot( 3,1,3 ),plot( xr ); 

ylim( [-1.1 1.1] ); 

title( ‘Signal with Samples Replicated’ ); 

% plot zoomed view of signals. 

figure 

subplot( 3,1,1 ),plot( x ); 

xlim( [0 100] ); 

ylim( [-1.1 1.1] ); 

title( ‘Original Signal’ ); 

subplot( 3,1,2 ),plot( y ); 

xlim( [0 800] ); 

ylim( [-1.1 1.1] ); 

title( ‘Signal with Inserted Zeros’ ); 

subplot( 3,1,3 ),plot( xr ); 

xlim( [0 800] ); 

ylim( [-1.1 1.1] ); 

title( ‘Signal with Samples Replicated’ ); 

%Plot the spectrums. 

figure 

subplot( 3,1,1 ),plot( 22e3*[0:length(X(1:end/
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2))-1]/length(X(1:end/2)), abs( X(1:end/2) ) ); 

% Note that 22e3 is one half of fs = 44K 

title( ‘Reconstruction Spectrum’ ); 

grid; 

subplot( 3,1,2 ),plot( 176e3*[0:length(Y(1:end/

2))-1]/length(Y(1:end/2)), abs( Y(1:end/2) ) ); 

% And again 176e3 is one half of 8*fs = 352K 

title( ‘Inserting Zeros’ ); 

grid; 

subplot( 3,1,3 ),plot( 176e3*[0:length(XR(1:end/

2))-1]/length(XR(1:end/2)),abs(XR(1:end/2)) ); 

title( ‘Spectrum of DAC Reconstruction’ ); 

grid; 

The following Figure is the first generated by the above 
MatLab script. 
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Figure 2.14 Signals for Testing The Effect of a DAC on a 
Signals Reproduction. 

The first plot, at top of Figure 2.14, is the input signal and 
is a cosine wave who’s frequency is continually increasing. 
This type of signal will be used repeatedly to allow for a visual 
display of the frequency response of systems.  The second plot 
shows the same signal with zeros inserted between each 
sample.  This is done to emphasis how the Nyquist sampling 
model is actually representing the sampled signal.  Finally the 
third plot is signal will each sample replicated 4 times, which 
react similar to the blocky DAC signal we described 
previously.   To display these signals and their shape more 
clearly The same signals are plotted here, but zoomed in on the 
first section of the plots. 
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Figure 2.15 First Few Samples of The Signals for Testing 
The Effect of a DAC on a Signals Reproduction. 

Figure 2.16 displays the spectrums of the three signals.  This 
top plot shows the spectrum of the “input” signal, for which 
it should be noted that it is very wide band.  If we could do 
a true spectrum, feel of the effects of our finite time window 
it would be flat across all the frequencies.  Now to create the 
second signal, we inserted seven zeros between each of the 
samples, making it look like the Nyquist sampled signal only 
sampled at a rate 8 times faster.  Note that the spectrum of the 
zero inserted signal shows 8 copies of the spectrum shown in 
the top plot.  On the other hand, the third plot, which is the 
replicated signal, shows a distinct roll off of the spectrum.  This 
roll off is the “sinc” that we spoke of previously. 
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Figure 2.16 Spectrum of The Signals, Showing The Effect 
of a DAC on a Signals Reproduction. 

Looking at the points that have been tagged in the 
spectrums we can quantify some important facts.  First the 
highest frequency in the input or original signal, at the end of 
the top plot we have a magnitude of 22.6967, and this is the 
same as the magnitude in the second spectrum (zero inserted) 
at the same frequency, indicating that we really do have copies 
of the original spectrum.  On the other hand, the spectrum of 
the replicated signal shows the roll off.  And if we look at the 
magnitude at the same frequency as shown in the second plot, 
we see a decrease of 14.5565 / 22.6967 = 0.6413 which is very 
close to sinc( f / fs ) at f = fs/2 or sinc( 1 / 2 ) = 0.6366. 

Thus it can be seen that the effect of the DAC on the output 
signal can be a problem, especially for signals that contain 
components that approach fs/2.  As we develop more 
techniques to analyze and filter signals, we will return to this 
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problem and demonstrate ways to correct these frequency 
components and better recover the signal. 

Conclusion 
In this section we have looked at how the sampling of a 

signal can cause a variety of effects, such as causing some 
frequency components to appear to be a different frequency 
than they originally were, known as aliasing.  We also 
established that if we are to avoid aliasing of frequency 
components we will need to sample faster that than the 
Nyquist rate .  Finally we showed that sending 
samples out to a DAC had some unusual effects. 

Probably the most important take away from this chapter 
is how what appears as a purely theoretical model of a process 
can be used to explain its effects.  Such as sampling being 
modelled as a stream of impulses being multiplied with a signal 
and explaining aliasing.  Or a stream of impulses being filtered 
by a filter with a square impulse response can identify a 
frequency roll off. 
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3. 

Z-TRANSFORM AND 
PROCESSING SAMPLED 
DATA. 

In the previous chapter we looked what happens to a signal 
when we reduce it to a sequence of number via an ADC.  We 
will now move on to the next step in our original system in 
which we will develop the algorithms we will be using in the 
processor to convert the samples coming in from the ADC 
into the sequence we send out to the DAC. 

Figure 3.1 Basic Discrete Data System Layout. 
Section A) The Z Transform and Its More Important 

Properties. 
In chapter 2, we showed how effective the Nyquist model 

was at characterizing data that is a sequence of samples, and 
that the Fourier Transform (FT) of that modelled data 



elucidated some very interesting properties.  We will now take 
that sampled data and employ the Laplace transform. 
Equation 3.1 is the Laplace transform of the input x(t) times 
the stream of impulses that create the Nyquist sampled signal. 

X_s (s) =  \int_{0} ^{\infty} (  x(t)  * \sum_{n=-\infty} 
^{\infty} {\delta (t-n T)}  * e^{-s t} ) dt 

                   (3.1) 
We will move x(t) under the sum and then based on the 

sifting property of impulse functions, we replace x(t) with x(n 
T), since t = n T is the only place that  is not zero. 

X_s (s) =  \int_{0} ^{\infty} (  \sum_{n=-\infty} ^{\infty} 
{x(n T)  * \delta (t-n T) * e^{-s t} } ) dt 

                   (3.2) 
As was the case with the FT, we will somewhat dispense 

with mathematical rigor and assume the proper conditioning 
on the functions and interchange the summation and integral. 
Do understand, this is done not to dismiss rigor, but to aid in 
understanding the process. 

X_s (s) =  \sum_{n=-\infty} ^{\infty} (x(n T)  * \int_{0} 
^{\infty} ( \delta (t-n T) * e^{-s t} ) dt) 

                   (3.3) 
Employing the sifting property of the  function, the 

integral disappears and it replaced with the summation of the 
values at t = n T.  Resulting in 

X_s (s) =  \sum_{n=0} ^{\infty} (  x(n T)  * e^{-s n T}  ) dt 
                                                 (3.4) 
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Then we will substitute in  and remove the 
redundant T from x(n T) and we will  have equation 3.5 

X_s (z) =  \sum_{n=0} ^{\infty} (  x(n)  * z^{-n}  )              
                                           (3.5) 

This summation equation (3.5) is known as the z transform, 
and much like the Laplace transform it will be our tool to 
understand and design discrete systems.  Since the z transform 
is the Laplace of a sampled signal, it will provide us with similar 
properties and results as the Laplace, but will subtle 
differences. 

For example, lets consider the effect of delaying the sampled 
sequence by one sample.  We will first note that the z transform 
is a summation and looks like 

\sum_{n=0} ^{\infty} (  x(n)  * z^{-n}  )  = x(0)  + x(1) 
z^{-1} + x(2) z^{-2} + x(3) z^{-3} + ... 

           (3.6) 
The z transform of the delayed version, x(n-1), is then 

   (3.7) 

Writing out the summation we would have 
\bar X(z) =  x(-1) + x(0) z^{-1} + x(1) z^{-2} + x(2) z^{-3} + 

... 
   (3.8) 

Note the … indicates that the sequence continues on in the 
manner shown.  Next we set out x(-1) and then factor out a 
single  for the remainder. 
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         (3.9) 
We can now observe that sum on the right, in parenthesis, is 

the z transform of x(n) or X(z). 
\bar X(z) = x(-1) + z^{-1}  X(z)                                                

 (3.10) 
An appendix that relates the z transform properties with the 

Laplace transform properties is at the end of this text. 
 
This property is analogous to the Laplace transform of the 

derivative of a time function. 
Let X(s) be the Laplace transform of the function of x(t) 

then 
L{ \frac{dx}{dt}  } = s X(s) + x(0)                                           

  (3.11) 
As a reminder of what the purpose of the Laplace transform 

is, consider the following circuit 

Figure 3.2 Circuit Used to Demonstrate The Purpose of 
The Laplace Transform. 
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Applying the Kirchhoff Voltage Law (KVL) around the 
circuit, we have 

- V_{in} + V_R + V_L + V_{out}  = 0                       (3.12) 
Recalling from physics, the voltage on the resistor (R) and 

inductor (L) are  respectively.  Also that 

 or  . Applying this to 

equation 3.12 and solving for  we have 
V_{in} =L \frac{d I}{d t} + I * R + V_{out}                      

(3.13) 

Note that in this circuit,   and  thus 

 resulting in 

V_{in} = L C \frac{{V_{out}}^2}{d^2 t} +  R C 
\frac{V_{out}}{dt} + V_{out} 

                      (3.14) 
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This property is analogous to the Laplace transform of the 
derivative of a time function. 

Let X(s) be the Laplace transform of the function of x(t) 
then 

L{ \frac{dx}{dt}  } = s X(s) + x(0)                                           
  (3.11) 

As a reminder of what the purpose of the Laplace transform 
is, consider the following circuit 



Figure 3.2 Circuit Used to Demonstrate The Purpose of 
The Laplace Transform. 

Applying the Kirchhoff Voltage Law (KVL) around the 
circuit, we have 

- V_{in} + V_R + V_L + V_{out}  = 0                       (3.12) 
Recalling from physics, the voltage on the resistor (R) and 

inductor (L) are  respectively.  Also that 

 or  . Applying this to 

equation 3.12 and solving for  we have 
V_{in} =L \frac{d I}{d t} + I * R + V_{out}                      

(3.13) 

Note that in this circuit,   and  thus 

 resulting in 

V_{in} = L C \frac{{V_{out}}^2}{d^2 t} +  R C 
\frac{V_{out}}{dt} + V_{out} 

                      (3.14) 
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