"

3 Tables!!

1.3 Tables

Table 1

Descriptive Statistics, LSMS-ISA Data

Variable Mean S.D. Min Max
Millet Yield (kg/ha) 695 629 0.660 3759
Sorghum Yield (kg/ha) 735 686 0.530 3930
Maize Yield (kg/ha) 1492 1221 1.26 6000
Material Inputs
Nitrogen Fertilizer (N nutrient kg/ha) 6.74 23.6 0.000 288
Manure (kg/ha) 1594 3800 0.000 29850
Compost (kg/ha) 25.8 247 0.000 4889
Other Organic Fertilizer (kg/ha) 5.64 60.6 0.000 1708
Pesticides (liter/ha) 0.053 0.510 0.000 10.5
Fungicide (liter/ha) 0.033 0.420 0.000 19.7
Herbicide (liter/ha) 0.270 1.17 0.000 19.1
Other Protecting Liquids (liter/ha) 0.007 0.110 0.000 3.14
Local Seed (kg/ha) 10.3 15.4 0.000 236
Improved Seed (kg/ha) 1.00 4.45 0.000 50.7
Labor
Total Labor (no. of days/ha) 45.1 84.8 0.000 1031
Plot Characteristics
Plot Area (ha) 3.07 6.12 0.020 52.7
Distance to plot from house (km) 2.81 4.00 0.000 60.0
Plain (0/1) 0.700 0.464 0.000 1.00
Plateau (0/1) 0.147 0.355 0.000 1.00
Lowlands (0/1) 0.034 0.180 0.000 1.00
Sloped (0/1) 0.130 0.340 0.000 1.00
Soil Sandy (0/1) 0.536 0.498 0.000 1.00
Soil Clay (0/1) 0.357 0.479 0.000 1.00
Soil Lateritic (0/1) 0.110 0.310 0.000 1.00
Anti-Erosion Structure (0/1) 0.043 0.200 0.000 1.00

Source: Authors, based on LSMS-ISA, Mali. Number of plot observations=3733

 

 

Table 4

Dryland Cereals Yield Response to N Fertilizer Applied, Instrumental Variables-household Fixed Effects Model

Variables (1) (2) (3) (4)
Nitrogen Fertilizer 0.190*** 0.218*** 0.162** 0.149*
(0.073) (0.081) (0.075) (0.080)
Manure 0.026*** 0.024*** 0.026***
(0.008) (0.009) (0.010)
Compost -0.058 -0.044 -0.033
(0.038) (0.037) (0.041)
Other Organic Fertilizer 0.051 0.024 0.022
(0.066) (0.066) (0.067)
Pesticide 0.253 0.304 0.304
(0.211) (0.201) (0.280)
Fungicide 0.076 0.029 0.082
(0.272) (0.248) (0.259)
Herbicide 0.104 -0.063 -0.095
(0.137) (0.134) (0.144)
Other Protecting Liquids 0.673 0.769 0.967
(1.285) (1.178) (1.202)
Total Labor 0.447*** 0.335*** 0.283***
(0.030) (0.033) (0.039)
Local Seed 0.353*** 0.294***
(0.039) (0.044)
Improved Seed 0.488*** 0.417***
(0.073) (0.085)
Millet -0.159* 0.071 0.249*** 0.295**
(0.090) (0.093) (0.096) (0.117)
Sorghum -0.393*** -0.188** -0.036 0.053
(0.075) (0.077) (0.079) (0.101)
Plot Area -0.025***
(0.005)
Distance (km) from House 0.017*
(0.009)
Plain -0.008
(0.130)
Plateau -0.019
(0.170)
Lowland -0.005
(0.210)
Sandy -0.032
(0.210)
Clay -0.028
(0.212)
Anti-Erosion Structure 0.486**
(0.198)
Observations 2,453 2,043 1,707 1,307
Number of households 776 671 548 425
Kleibergen Paap F statistic 218.6 155.8 148.3 112.5
Marginal Effect of N

 

N

23.13 26.95 19.49 16.81
Nutrient Applied

Source: Authors, based on LSMS data. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Sample sizes drop with missing observations in more complete models, particularly those including seed quantities.

 

1.4 Tables

Table 1

Definition of Control Variables in Multivalued Treatment Effect Model

Control variable Definition
Treatment covariates  
individually-managed plot managed individually by male or female who is not the EAF head or designate=1, else 0
manager head=1; individual male not head=2; individual female not head=3
education plot manager attended primary school=1, 0 else
labor supply number of adults in EAF between 12 and 55 years of age (inclusive)/total area operated by EAF
weeding cost cost of hiring weeding labor per ha
subsidy EAF benefited from fertilizer subsidy=1, 0 else
market weekly market fair in village=1, 0 else
village village fixed effect
   
Outcome covariates
seed quantity of seed in kgs used per ha
fertilizer kgs of fertilizer applied per ha
male labor number of adult male person-days (14 years and above) per ha
female labor number of adults female person-days (14 years and above) per ha
child labor number of children person-days (under 14 years) per ha
machinery use hours of equipment use her ha
manure manure use on plot=1, 0 else
location time in minutes to travel from home to the plot
erosion control any anti-erosion structure built on plot=1, 0 else

 

Table 5

Covariates Balancing Test

 Standardized  differences  Variance  ratio
 Raw  Weighted  Raw  Weighted
Not registered herbicides
manager     0.538     0.538     2.662     2.660
village    -1.401    -1.401     0.451     0.451
subsidy    -0.283    -0.283     1.158     1.157
age    -0.192    -0.192     1.012     1.011
education     0.278     0.278     1.647     1.645
market    -0.301    -0.301     0.654     0.654
labor supply     0.334     0.334     1.216     1.215
weeding cost     0.732     0.732    12.777    12.768
individually-managed     0.559     0.559     2.745     2.743
seed    -0.069    -0.069     2.048     2.046
fertilizer     0.031     0.031     0.891     0.890
male labor    -0.141    -0.141     1.043     1.043
female labor    -0.192    -0.192     0.569     0.568
child labor     0.194     0.194     1.742     1.740
location    -0.033    -0.033     1.108     1.107
erosion control    -0.070    -0.070     0.999     0.999
machinery use    -0.313    -0.313     0.667     0.666
manure     0.020     0.020     1.016     1.015
 

Registered herbicides    

manager     0.189     0.189     1.600     1.599
village    -0.824    -0.824     0.716     0.716
subsidy    -0.140    -0.140     1.099     1.098
age    -0.072    -0.072     1.022     1.021
education     0.180     0.180     1.427     1.426
market    -0.222    -0.222     0.751     0.750
labor supply     0.318     0.318     1.156     1.155
weeding cost     0.535     0.535    21.569    21.555
individually-managed     0.198     0.198     1.643     1.642
seed     0.180     0.180     1.887     1.886
fertilizer     0.521     0.521     2.954     2.952
male labor     0.146     0.146     1.423     1.422
female labor    -0.185    -0.185     0.710     0.709
child labor     0.154     0.154     1.518     1.517
location    -0.172    -0.172     1.092     1.092
erosion control    -0.251    -0.251     0.797     0.796
machinery use    -0.095    -0.095     0.967     0.966
manure     0.324     0.324     1.138     1.137

 

Table 6

Rosenbaum Bounds Analysis for the Main Outcomes

Outcome variables Gamma CI+ CI-
1 -401.395 -189.458
Yield 1.2 -512.604 -77.024
1.4 -609.629 16.257
1 -7.902 -4.134
Male labor 1.2 -10.132 -2.312
1.4 -12.194 -0.802
1.6 -14.034 0.524
1 -0.003 -0.003
1.2 -0.003 -0.003
1.4 -0.004 -0.003
1.6 -0.004 -0.004
Female labor 1.8 -2.013 -0.004
2 -2.885 -0.004
2.2 -3.962 -0.004
2.4 -4.878 0.553
1 -0.003 -0.004
1.2 -0.003 -0.004
1.4 -0.704 -0.004
Children labor 1.6 -1.676 -0.003
1.8 -2.102 -0.002
2 -3.106 -0.003
2.2 -3.484 -0.003
2.4 -3.896 0.549

 

 

Table 7

Average Treatment Effects by Outcome and Model

RA AIPW IPWRA PSM
ATE on Yield
not registered -219.4* -204.0** -152.1
registered 66.10 108.2 137.3
use herbicide 1.876
ATE on men weeding labor
not registered -4.686** -5.441** -6.284***
registered -7.973*** -8.674*** -9.327***
use herbicide -8.061***
ATE on women weeding labor
not registered -1.055 -0.920 -1.318
registered -1.397 -1.788* -2.144**
use herbicide -1.599
ATE on children weeding labor
not registered -1.620 -1.785 -2.279*
registered -1.913* -2.241** -2.706**
use herbicide -1.342
N 1136 1136 1136 1136

t statistics in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

 

 

1.5 Tables

 

Table 2

Habit of Receiving Climate Information

Region Type of Actor Habit of receiving climate information?
No Yes
Source
Agriculture ANACIM Yeuglé

Plat

form

Cowpea

Sector

Platform

Radio Tele

vision

Traditional Information
Diourbel Participated in the Training 29% 57% 7% 7%
Extensive Experience on CI 25% 75% 0%
No Training but CI 100% 0% 0%
No Training and No CI
Fatick Participated in the Training 12% 82% 0% 6%
Extensive Experience on CI 100% 0%
No Training but CI 64% 9% 18% 9%
No Training and No CI 89% 11% 0%
Kaffrine Participated in the Training 11% 11% 67% 11%
Extensive Experience on CI 15% 77% 8%
No Training but CI
No Training and No CI 100%
Sample 33% 1% 52% 4% 1% 6% 1% 1%

Source: Author based on ISRA/BAME survey data, 2016

 

 

Table 3

Use of Climate Information

Region Type of Actor Did you use the climate and weather information you received to conduct your campaign?
Yes No Not Received
Diourbel Participated in the Training 93% 0% 7%
Extensive Experience on CI 100% 0% 0%
No Training but CI 100% 0% 0%
Fatick Participated in the Training 100% 0% 0%
Extensive Experience on CI 100% 0% 0%
No Training but IC 82% 9% 9%
No Training and No CI 11% 0% 89%
Kaffrine Participated in the Training 89% 11% 0%
Extensive Experience on CI 100% 0% 0%
No Training and No CI 0% 0% 100%
Sample 84% 2% 13%

Source: Author based on ISRA/BAME survey data, 2016

 

Table 4

Types of Use of Climate Information

Region Type of actor Types of use of climate information
Crop

Selec

tion

Variety

Selection

Plot Preparation Ploughing Period Sowing/

Seeding Period

NPK Applica

tion

Period

Weeding/

Hoeing Period

Diourbel Participa-

ted in the Training

54% 39% 0% 0% 8% 0% 0%
Extensive Experien-

ce on CI

50% 50% 0% 0% 0% 0% 0%
No Training but CI 50% 50% 0% 0% 0% 0% 0%
Fatick Participa-

ted in the Training

18% 65% 0% 6% 12% 0% 0%
Extensive Experien-

ce on CI

0% 0% 50% 0% 50% 0% 0%
No Training but CI 22% 11% 0% 0% 44% 11% 11%
No Training and No CI 100% 0% 0% 0% 0% 0% 0%
Kaffrine Participa-ted in the Training 100% 0% 0% 0% 0% 0% 0%
Extensive Experience on CI 77% 23% 0% 0% 0% 0% 0%
No Training and No CI
Sample 48% 35% 1% 1% 12% 1% 1%

Source: Author based on ISRA/BAME survey data, 2016

 

2.7 Tables

Table 1

Characteristics of the Varieties Studied

Variety Code Type Cycle (days) Height

(cm)

Potential yield (t/ha) Panicle form Photoperiod- sensitivity Isohyet

(mm)

Origin
Fadda V1 Guinea (hybrid) 128 200-300 4.5 noncompact mean 700-1000 Mali
NIELENI V2 Guinea (hybrid) 115 300 4 semicompact low 700-800 Mali
IS15401 V3 Guinea-Caudatum 115 400-450 2 semicompact high 900-1200 Mali
PABLO V4 Guinea (hybrid) 125 400 4 noncompact mean 700-1000 Mali
CSM63E V5 Guinea 90 400 2 noncompact low 600-1000 Mali
SK5912 V6 Caudatum 170 200 2.5-3.5 semicompact high 700-900 Nigeria
GRINKAN V7 Caudatum 90 120 4 semicompact non 500-800 Mali
SOUMBA V8 Caudatum 115 250 2.5 semicompact low 600-1000 Mali
621B V9 Caudatum 105 175 2.5-3 semicompact non 600-900 Senegal
F2-20 V10 Caudatum 110 210 3-5.3 semicompact low 600-900 Senegal

 

 

Table 4

Performance of 10 Sorghum Varieties Under Two Water Treatments (Well-watered and Drought Stress) for Agro-morphological Traits Measured During 2018 and 2019 Field Trials

NLA PHS DLW PHT SDW YIELD
V ww ds ww ds ww ds ww ds ww ds ww ds
Year 2018 V1 14.6cd 13.5bc 133.7bc 111.7bcd 5.7e 13.9cd 172.5cd 148.9cd 427.6bc 358.7abc 4183.4abc 3182.3b
V2 15.3bc 13.6bc 125.7bc 101.6bcd 16.8ab 28.7a 162.8d 140.4cde 470.2abc 349.3abc 3715.9d 3359.3b
V3 15.5abc 13.2bc 204.3a 179.3a 12.6bcd 25.8a 191.2bc 193.6ab 498.7ab 409.0abc 2001.5e 1817.6de
V4 15.5abc 13.8bc 200.6a 137.5b 10.7cde 17.3bc 205.6b 161.3bc 530.0ab 449.8ab 1606.4ef 1540.3e
V5 15.0bc 13.5bc 186.3a 193.5a 6.0e 16.6bc 235.3a 215.6a 603.2a 461.4a 1473.1f 1168f
V6 16.6a 15.9a 108.5cd 91.2cd 7.8de 9.9de 159.8d 133.6cde 408.0bc 424.4ab 3926abcd 2598.3c
V7 13.5d 12.4c 92.5d 86.2cd 14.2bc 19.2b 127.2e 108.9e 315.0c 294.5bc 3812.1cd 2006.9d
V8 16.0ab 14.4ab 147.5b 111.8bcd 22.4a 26.9a 168.1d 126.0de 496.8ab 339.9abc 3922bcd 3132.8b
V9 15.7abc 14.9ab 98.4d 74.0d 18.3ab 8.6e 152.2d 117.1de 321.5c 259.3c 4246.0ab 3851.7a
V10 15.1bc 13.8bc 141.0b 116.1bc 21.4a 28.3a 169.3cd 140.0cde 451.0abc 359.3abc 4349.3a 2643.02c
Grand mean 15.3a 13.9b 143.8a  120.3b 13.6b 19.5a 174.8a  148.5b 453.3a 370.6b 3271.85a 2526.21b
ANOVA
V *** *** *** *** *** *** *** *** *** ** *** ***
E *** *** *** *** *** ***
V×E ns ** *** * Ns ***
Year 2019 V1 15.7ab 13.7a 120.4a 77.5a 13.7d 15.1e 173.2cd 127abcd 494.2bc 377.3abc 3876.8a 2424a
V2 16.5a 14.2a 140.6a 83.5a 14.9ab 16abcd 149.4de 120.1bcd 404.5bcd 259.0bc 2127.7cd 2070.3abc
V3 15.0ab 13.8a 163.1a 103.1a 11.9f 15.7de 216.7ab 170.4abc 329.6cd 323.0abc 1886.4d 1752.5bc
V4 15.2ab 14.3a 107.3a 38.3a 15.3a 16.1cd 204.6bc 183.2ab 791.2a 399.4ab 1233.9e 1124.5de
V5 15.5ab 14.3a 154.6a 68.5a 14.8ab 16.3bcd 250.8a 198.2a 564.5b 428.4a 771.2f 817.4e
V6 16.0a 15.3a 107.1a 60.8a 12.6e 16.1cd 137.9ef 88.4d 413.2bcd 274.0abc 3429.2ab 1582bcd
V7 13.5b 14.1a 106.5a 55.3a 14.5bc 16abcd 109.2f 93.4d 380.8bcd 246.5c 3166.7b 2027.6abc
V8 15.8ab 14.4a 124.5a 49.0a 15.1ab 17.2a 143def 106.1cd 330.4cd 267.8abc 2514.8c 2087.6ab
V9 15.1ab 14.4a 99.4a 53.5a 15.0ab 17.1ab 131.4ef 101.8cd 303.7d 272.0abc 2105.5cd 2037abc
V10 14.3ab 13.7a 149.4a 66.3a 14.0cd 16.7abc 140def 102.6cd 382.6bcd 278.3abc 3085.8b 1462.9cd
Grand mean 15.3a 14.2b 130.5a 66.5b 14.2b 16.3a 165.7a 127.2b 427.3a 308.6b 2419.84a 1738.64b
ANOVA
V * ns ns ns *** *** *** *** *** ** *** ***
E *** *** *** *** *** ***
V×E ns ns *** * ** ***
Both Y ns *** *** *** *** ***
years V×Y * *** *** *** ** ***
E×Y ns *** *** ns ** *
V×E×Y ns ** * ns ns ***

 

 

 

Table 1

Type of Actor

Region Type of Actor Total
Participated in the Training Extensive Experience on CI No Training but CI No Training and No CI
Diourbel 14 4 2 0 20
Fatick 17 2 11 9 39
Kaffrine 9 13 0 1 23
Groundnut Basin 40 19 13 10 82

Source: Author based on ISRA/BAME survey data, 2016

License

CADS Learning & Modeling Copyright © by Center for the Advancement of Digital Scholarship and egfinch. All Rights Reserved.