3 Tables!!
1.3 Tables
Table 1
Descriptive Statistics, LSMS-ISA Data
Variable | Mean | S.D. | Min | Max |
Millet Yield (kg/ha) | 695 | 629 | 0.660 | 3759 |
Sorghum Yield (kg/ha) | 735 | 686 | 0.530 | 3930 |
Maize Yield (kg/ha) | 1492 | 1221 | 1.26 | 6000 |
Material Inputs | ||||
Nitrogen Fertilizer (N nutrient kg/ha) | 6.74 | 23.6 | 0.000 | 288 |
Manure (kg/ha) | 1594 | 3800 | 0.000 | 29850 |
Compost (kg/ha) | 25.8 | 247 | 0.000 | 4889 |
Other Organic Fertilizer (kg/ha) | 5.64 | 60.6 | 0.000 | 1708 |
Pesticides (liter/ha) | 0.053 | 0.510 | 0.000 | 10.5 |
Fungicide (liter/ha) | 0.033 | 0.420 | 0.000 | 19.7 |
Herbicide (liter/ha) | 0.270 | 1.17 | 0.000 | 19.1 |
Other Protecting Liquids (liter/ha) | 0.007 | 0.110 | 0.000 | 3.14 |
Local Seed (kg/ha) | 10.3 | 15.4 | 0.000 | 236 |
Improved Seed (kg/ha) | 1.00 | 4.45 | 0.000 | 50.7 |
Labor | ||||
Total Labor (no. of days/ha) | 45.1 | 84.8 | 0.000 | 1031 |
Plot Characteristics | ||||
Plot Area (ha) | 3.07 | 6.12 | 0.020 | 52.7 |
Distance to plot from house (km) | 2.81 | 4.00 | 0.000 | 60.0 |
Plain (0/1) | 0.700 | 0.464 | 0.000 | 1.00 |
Plateau (0/1) | 0.147 | 0.355 | 0.000 | 1.00 |
Lowlands (0/1) | 0.034 | 0.180 | 0.000 | 1.00 |
Sloped (0/1) | 0.130 | 0.340 | 0.000 | 1.00 |
Soil Sandy (0/1) | 0.536 | 0.498 | 0.000 | 1.00 |
Soil Clay (0/1) | 0.357 | 0.479 | 0.000 | 1.00 |
Soil Lateritic (0/1) | 0.110 | 0.310 | 0.000 | 1.00 |
Anti-Erosion Structure (0/1) | 0.043 | 0.200 | 0.000 | 1.00 |
Source: Authors, based on LSMS-ISA, Mali. Number of plot observations=3733
Table 4
Dryland Cereals Yield Response to N Fertilizer Applied, Instrumental Variables-household Fixed Effects Model
Variables | (1) | (2) | (3) | (4) |
Nitrogen Fertilizer | 0.190*** | 0.218*** | 0.162** | 0.149* |
(0.073) | (0.081) | (0.075) | (0.080) | |
Manure | 0.026*** | 0.024*** | 0.026*** | |
(0.008) | (0.009) | (0.010) | ||
Compost | -0.058 | -0.044 | -0.033 | |
(0.038) | (0.037) | (0.041) | ||
Other Organic Fertilizer | 0.051 | 0.024 | 0.022 | |
(0.066) | (0.066) | (0.067) | ||
Pesticide | 0.253 | 0.304 | 0.304 | |
(0.211) | (0.201) | (0.280) | ||
Fungicide | 0.076 | 0.029 | 0.082 | |
(0.272) | (0.248) | (0.259) | ||
Herbicide | 0.104 | -0.063 | -0.095 | |
(0.137) | (0.134) | (0.144) | ||
Other Protecting Liquids | 0.673 | 0.769 | 0.967 | |
(1.285) | (1.178) | (1.202) | ||
Total Labor | 0.447*** | 0.335*** | 0.283*** | |
(0.030) | (0.033) | (0.039) | ||
Local Seed | 0.353*** | 0.294*** | ||
(0.039) | (0.044) | |||
Improved Seed | 0.488*** | 0.417*** | ||
(0.073) | (0.085) | |||
Millet | -0.159* | 0.071 | 0.249*** | 0.295** |
(0.090) | (0.093) | (0.096) | (0.117) | |
Sorghum | -0.393*** | -0.188** | -0.036 | 0.053 |
(0.075) | (0.077) | (0.079) | (0.101) | |
Plot Area | -0.025*** | |||
(0.005) | ||||
Distance (km) from House | 0.017* | |||
(0.009) | ||||
Plain | -0.008 | |||
(0.130) | ||||
Plateau | -0.019 | |||
(0.170) | ||||
Lowland | -0.005 | |||
(0.210) | ||||
Sandy | -0.032 | |||
(0.210) | ||||
Clay | -0.028 | |||
(0.212) | ||||
Anti-Erosion Structure | 0.486** | |||
(0.198) | ||||
Observations | 2,453 | 2,043 | 1,707 | 1,307 |
Number of households | 776 | 671 | 548 | 425 |
Kleibergen Paap F statistic | 218.6 | 155.8 | 148.3 | 112.5 |
Marginal Effect of N
N |
23.13 | 26.95 | 19.49 | 16.81 |
Nutrient Applied |
Source: Authors, based on LSMS data. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Sample sizes drop with missing observations in more complete models, particularly those including seed quantities.
1.4 Tables
Table 1
Definition of Control Variables in Multivalued Treatment Effect Model
Control variable | Definition |
Treatment covariates | |
individually-managed | plot managed individually by male or female who is not the EAF head or designate=1, else 0 |
manager | head=1; individual male not head=2; individual female not head=3 |
education | plot manager attended primary school=1, 0 else |
labor supply | number of adults in EAF between 12 and 55 years of age (inclusive)/total area operated by EAF |
weeding cost | cost of hiring weeding labor per ha |
subsidy | EAF benefited from fertilizer subsidy=1, 0 else |
market | weekly market fair in village=1, 0 else |
village | village fixed effect |
Outcome covariates | |
seed | quantity of seed in kgs used per ha |
fertilizer | kgs of fertilizer applied per ha |
male labor | number of adult male person-days (14 years and above) per ha |
female labor | number of adults female person-days (14 years and above) per ha |
child labor | number of children person-days (under 14 years) per ha |
machinery use | hours of equipment use her ha |
manure | manure use on plot=1, 0 else |
location | time in minutes to travel from home to the plot |
erosion control | any anti-erosion structure built on plot=1, 0 else |
Table 5
Covariates Balancing Test
Standardized | differences | Variance | ratio | |
Raw | Weighted | Raw | Weighted | |
Not registered herbicides | ||||
manager | 0.538 | 0.538 | 2.662 | 2.660 |
village | -1.401 | -1.401 | 0.451 | 0.451 |
subsidy | -0.283 | -0.283 | 1.158 | 1.157 |
age | -0.192 | -0.192 | 1.012 | 1.011 |
education | 0.278 | 0.278 | 1.647 | 1.645 |
market | -0.301 | -0.301 | 0.654 | 0.654 |
labor supply | 0.334 | 0.334 | 1.216 | 1.215 |
weeding cost | 0.732 | 0.732 | 12.777 | 12.768 |
individually-managed | 0.559 | 0.559 | 2.745 | 2.743 |
seed | -0.069 | -0.069 | 2.048 | 2.046 |
fertilizer | 0.031 | 0.031 | 0.891 | 0.890 |
male labor | -0.141 | -0.141 | 1.043 | 1.043 |
female labor | -0.192 | -0.192 | 0.569 | 0.568 |
child labor | 0.194 | 0.194 | 1.742 | 1.740 |
location | -0.033 | -0.033 | 1.108 | 1.107 |
erosion control | -0.070 | -0.070 | 0.999 | 0.999 |
machinery use | -0.313 | -0.313 | 0.667 | 0.666 |
manure | 0.020 | 0.020 | 1.016 | 1.015 |
Registered herbicides |
||||
manager | 0.189 | 0.189 | 1.600 | 1.599 |
village | -0.824 | -0.824 | 0.716 | 0.716 |
subsidy | -0.140 | -0.140 | 1.099 | 1.098 |
age | -0.072 | -0.072 | 1.022 | 1.021 |
education | 0.180 | 0.180 | 1.427 | 1.426 |
market | -0.222 | -0.222 | 0.751 | 0.750 |
labor supply | 0.318 | 0.318 | 1.156 | 1.155 |
weeding cost | 0.535 | 0.535 | 21.569 | 21.555 |
individually-managed | 0.198 | 0.198 | 1.643 | 1.642 |
seed | 0.180 | 0.180 | 1.887 | 1.886 |
fertilizer | 0.521 | 0.521 | 2.954 | 2.952 |
male labor | 0.146 | 0.146 | 1.423 | 1.422 |
female labor | -0.185 | -0.185 | 0.710 | 0.709 |
child labor | 0.154 | 0.154 | 1.518 | 1.517 |
location | -0.172 | -0.172 | 1.092 | 1.092 |
erosion control | -0.251 | -0.251 | 0.797 | 0.796 |
machinery use | -0.095 | -0.095 | 0.967 | 0.966 |
manure | 0.324 | 0.324 | 1.138 | 1.137 |
Table 6
Rosenbaum Bounds Analysis for the Main Outcomes
Outcome variables | Gamma | CI+ | CI- | |
1 | -401.395 | -189.458 | ||
Yield | 1.2 | -512.604 | -77.024 | |
1.4 | -609.629 | 16.257 | ||
1 | -7.902 | -4.134 | ||
Male labor | 1.2 | -10.132 | -2.312 | |
1.4 | -12.194 | -0.802 | ||
1.6 | -14.034 | 0.524 | ||
1 | -0.003 | -0.003 | ||
1.2 | -0.003 | -0.003 | ||
1.4 | -0.004 | -0.003 | ||
1.6 | -0.004 | -0.004 | ||
Female labor | 1.8 | -2.013 | -0.004 | |
2 | -2.885 | -0.004 | ||
2.2 | -3.962 | -0.004 | ||
2.4 | -4.878 | 0.553 | ||
1 | -0.003 | -0.004 | ||
1.2 | -0.003 | -0.004 | ||
1.4 | -0.704 | -0.004 | ||
Children labor | 1.6 | -1.676 | -0.003 | |
1.8 | -2.102 | -0.002 | ||
2 | -3.106 | -0.003 | ||
2.2 | -3.484 | -0.003 | ||
2.4 | -3.896 | 0.549 |
Table 7
Average Treatment Effects by Outcome and Model
RA | AIPW | IPWRA | PSM | |
ATE on Yield | ||||
not registered | -219.4* | -204.0** | -152.1 | |
registered | 66.10 | 108.2 | 137.3 | |
use herbicide | 1.876 | |||
ATE on men weeding labor | ||||
not registered | -4.686** | -5.441** | -6.284*** | |
registered | -7.973*** | -8.674*** | -9.327*** | |
use herbicide | -8.061*** | |||
ATE on women weeding labor | ||||
not registered | -1.055 | -0.920 | -1.318 | |
registered | -1.397 | -1.788* | -2.144** | |
use herbicide | -1.599 | |||
ATE on children weeding labor | ||||
not registered | -1.620 | -1.785 | -2.279* | |
registered | -1.913* | -2.241** | -2.706** | |
use herbicide | -1.342 | |||
N | 1136 | 1136 | 1136 | 1136 |
t statistics in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01
1.5 Tables
Table 2
Habit of Receiving Climate Information
Region | Type of Actor | Habit of receiving climate information? | |||||||
No | Yes | ||||||||
Source | |||||||||
Agriculture | ANACIM | Yeuglé
Plat form |
Cowpea
Sector Platform |
Radio | Tele
vision |
Traditional Information | |||
Diourbel | Participated in the Training | 29% | – | 57% | – | 7% | 7% | – | – |
Extensive Experience on CI | – | – | 25% | 75% | – | 0% | – | – | |
No Training but CI | 100% | – | 0% | – | – | 0% | – | – | |
No Training and No CI | – | – | – | – | – | – | – | – | |
Fatick | Participated in the Training | 12% | – | 82% | – | – | 0% | 6% | – |
Extensive Experience on CI | – | 100% | – | – | 0% | – | |||
No Training but CI | 64% | – | 9% | – | – | 18% | – | 9% | |
No Training and No CI | 89% | – | 11% | – | – | 0% | – | – | |
Kaffrine | Participated in the Training | 11% | 11% | 67% | – | – | 11% | – | – |
Extensive Experience on CI | 15% | – | 77% | – | – | 8% | – | – | |
No Training but CI | – | – | – | – | – | – | – | – | |
No Training and No CI | 100% | – | – | – | – | – | – | – | |
Sample | 33% | 1% | 52% | 4% | 1% | 6% | 1% | 1% |
Source: Author based on ISRA/BAME survey data, 2016
Table 3
Use of Climate Information
Region | Type of Actor | Did you use the climate and weather information you received to conduct your campaign? | ||
Yes | No | Not Received | ||
Diourbel | Participated in the Training | 93% | 0% | 7% |
Extensive Experience on CI | 100% | 0% | 0% | |
No Training but CI | 100% | 0% | 0% | |
Fatick | Participated in the Training | 100% | 0% | 0% |
Extensive Experience on CI | 100% | 0% | 0% | |
No Training but IC | 82% | 9% | 9% | |
No Training and No CI | 11% | 0% | 89% | |
Kaffrine | Participated in the Training | 89% | 11% | 0% |
Extensive Experience on CI | 100% | 0% | 0% | |
No Training and No CI | 0% | 0% | 100% | |
Sample | 84% | 2% | 13% |
Source: Author based on ISRA/BAME survey data, 2016
Table 4
Types of Use of Climate Information
Region | Type of actor | Types of use of climate information | ||||||
Crop
Selec tion |
Variety
Selection |
Plot Preparation | Ploughing Period | Sowing/
Seeding Period |
NPK Applica
tion Period |
Weeding/
Hoeing Period |
||
Diourbel | Participa-
ted in the Training |
54% | 39% | 0% | 0% | 8% | 0% | 0% |
Extensive Experien-
ce on CI |
50% | 50% | 0% | 0% | 0% | 0% | 0% | |
No Training but CI | 50% | 50% | 0% | 0% | 0% | 0% | 0% | |
Fatick | Participa-
ted in the Training |
18% | 65% | 0% | 6% | 12% | 0% | 0% |
Extensive Experien-
ce on CI |
0% | 0% | 50% | 0% | 50% | 0% | 0% | |
No Training but CI | 22% | 11% | 0% | 0% | 44% | 11% | 11% | |
No Training and No CI | 100% | 0% | 0% | 0% | 0% | 0% | 0% | |
Kaffrine | Participa-ted in the Training | 100% | 0% | 0% | 0% | 0% | 0% | 0% |
Extensive Experience on CI | 77% | 23% | 0% | 0% | 0% | 0% | 0% | |
No Training and No CI | – | – | – | – | – | – | – | |
Sample | 48% | 35% | 1% | 1% | 12% | 1% | 1% |
Source: Author based on ISRA/BAME survey data, 2016
2.7 Tables
Table 1
Characteristics of the Varieties Studied
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Table 4
Performance of 10 Sorghum Varieties Under Two Water Treatments (Well-watered and Drought Stress) for Agro-morphological Traits Measured During 2018 and 2019 Field Trials
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Table 1
Type of Actor
Region | Type of Actor | Total | |||
Participated in the Training | Extensive Experience on CI | No Training but CI | No Training and No CI | ||
Diourbel | 14 | 4 | 2 | 0 | 20 |
Fatick | 17 | 2 | 11 | 9 | 39 |
Kaffrine | 9 | 13 | 0 | 1 | 23 |
Groundnut Basin | 40 | 19 | 13 | 10 | 82 |
Source: Author based on ISRA/BAME survey data, 2016